首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6767篇
  免费   521篇
  国内免费   368篇
  2024年   4篇
  2023年   429篇
  2022年   166篇
  2021年   254篇
  2020年   314篇
  2019年   230篇
  2018年   282篇
  2017年   235篇
  2016年   284篇
  2015年   347篇
  2014年   342篇
  2013年   498篇
  2012年   336篇
  2011年   345篇
  2010年   308篇
  2009年   394篇
  2008年   285篇
  2007年   294篇
  2006年   278篇
  2005年   238篇
  2004年   201篇
  2003年   176篇
  2002年   144篇
  2001年   123篇
  2000年   93篇
  1999年   125篇
  1998年   94篇
  1997年   69篇
  1996年   85篇
  1995年   72篇
  1994年   64篇
  1993年   70篇
  1992年   66篇
  1991年   58篇
  1990年   44篇
  1989年   43篇
  1988年   39篇
  1987年   37篇
  1986年   22篇
  1985年   29篇
  1984年   27篇
  1983年   11篇
  1982年   18篇
  1981年   17篇
  1980年   12篇
  1979年   17篇
  1978年   5篇
  1977年   6篇
  1976年   5篇
  1970年   9篇
排序方式: 共有7656条查询结果,搜索用时 31 毫秒
61.
  1. Download : Download high-res image (133KB)
  2. Download : Download full-size image
Highlights
  • •Flow cytometry analysis is used to isolate ASC speck(+) NPC cells.
  • •Proteome analysis of ASC speck(+) NPC cells reveals enriched mitochondrial OxPhos proteins.
  • •OxPhos proteins mediate NLRP3 inflammasome activation through mtROS.
  • •OxPhos proteins, NDUFB8 and ATP5B are correlated with NPC local recurrence.
  相似文献   
62.
  1. Download : Download high-res image (207KB)
  2. Download : Download full-size image
Highlights
  • •Urinary proteomes of patients with recurrent UTI, renal scarring, and VUR.
  • •80 proteins differentially expressed, compared to healthy controls.
  • •62 proteins may be indicative of susceptibility for UTI.
  • •Altered acute phase response, extracellular matrix and carbohydrate metabolism.
  相似文献   
63.
Genetic diversity provides the basic substrate for evolution, yet few studies assess the impacts of global climate change (GCC) on intraspecific genetic variation. In this review, we highlight the importance of incorporating neutral and non‐neutral genetic diversity when assessing the impacts of GCC, for example, in studies that aim to predict the future distribution and fate of a species or ecological community. Specifically, we address the following questions: Why study the effects of GCC on intraspecific genetic diversity? How does GCC affect genetic diversity? How is the effect of GCC on genetic diversity currently studied? Where is potential for future research? For each of these questions, we provide a general background and highlight case studies across the animal, plant and microbial kingdoms. We further discuss how cryptic diversity can affect GCC assessments, how genetic diversity can be integrated into studies that aim to predict species' responses on GCC and how conservation efforts related to GCC can incorporate and profit from inclusion of genetic diversity assessments. We argue that studying the fate of intraspecifc genetic diversity is an indispensable and logical venture if we are to fully understand the consequences of GCC on biodiversity on all levels.  相似文献   
64.
65.
Leucine rich repeat kinases 1 and 2 (LRRK1 and LRRK2) are paralogs which share a similar domain organization, including a serine-threonine kinase domain, a Ras of complex proteins domain (ROC), a C-terminal of ROC domain (COR), and leucine-rich and ankyrin-like repeats at the N-terminus. The precise cellular roles of LRRK1 and LRRK2 have yet to be elucidated, however LRRK1 has been implicated in tyrosine kinase receptor signaling1,2, while LRRK2 is implicated in the pathogenesis of Parkinson''s disease3,4. In this report, we present a protocol to label the LRRK1 and LRRK2 proteins in cells with 32P orthophosphate, thereby providing a means to measure the overall phosphorylation levels of these 2 proteins in cells. In brief, affinity tagged LRRK proteins are expressed in HEK293T cells which are exposed to medium containing 32P-orthophosphate. The 32P-orthophosphate is assimilated by the cells after only a few hours of incubation and all molecules in the cell containing phosphates are thereby radioactively labeled. Via the affinity tag (3xflag) the LRRK proteins are isolated from other cellular components by immunoprecipitation. Immunoprecipitates are then separated via SDS-PAGE, blotted to PVDF membranes and analysis of the incorporated phosphates is performed by autoradiography (32P signal) and western detection (protein signal) of the proteins on the blots. The protocol can readily be adapted to monitor phosphorylation of any other protein that can be expressed in cells and isolated by immunoprecipitation.  相似文献   
66.
Telomere DNA-binding proteins protect the ends of chromosomes in eukaryotes. A subset of these proteins are constructed with one or more OB folds and bind with G+T-rich single-stranded DNA found at the extreme termini. The resulting DNA-OB protein complex interacts with other telomere components to coordinate critical telomere functions of DNA protection and DNA synthesis. While the first crystal and NMR structures readily explained protection of telomere ends, the picture of how single-stranded DNA becomes available to serve as primer and template for synthesis of new telomere DNA is only recently coming into focus. New structures of telomere OB fold proteins alongside insights from genetic and biochemical experiments have made significant contributions towards understanding how protein-binding OB proteins collaborate with DNA-binding OB proteins to recruit telomerase and DNA polymerase for telomere homeostasis. This review surveys telomere OB protein structures alongside highly comparable structures derived from replication protein A (RPA) components, with the goal of providing a molecular context for understanding telomere OB protein evolution and mechanism of action in protection and synthesis of telomere DNA.  相似文献   
67.
《Process Biochemistry》2014,49(5):751-757
The biosynthesis of L-phenylalanine (Phe) is one of the most complicated amino acid synthesis pathways. In this study, the engineering of Phe producer was carried out to illustrate the effectiveness of systems level engineering: (1) inactivated glucose specific phosphoenolpyruvate-carbohydrate phosphotransferase (PTS) system by inactivation of crr to moderate the glucose uptake rate to reduce overflow metabolism; (2) genetic switch on or off the expression of phefbr, aroG15, ydiB, aroK, and tyrB to increase the supply of precursors; (3) employed a tyrA mutant strain to reduce carbon diversion and to result in non-growing cells; (4) enhanced the efflux of Phe by overexpressing yddG to shift equilibrium towards Phe synthesis and to release the feedback regulation in Phe synthesis. The mutants in PTS were firstly compared and a crr mutant was firstly screened. The mutant AroG15 was demonstrated to a thermostable mutant. The strains expressing yddG excreted Phe into the medium at higher rate and less intracellular Phe accumulated. By systems level engineering, an engineered Phe producer achieved 47.0 g/L Phe with a yield of 0.252 g/g which was the highest under the non-optimized fermentation condition.  相似文献   
68.
Hematopoietic processes display 24h rhythms both in rodents and in human beings. We hypothesized these rhythms to be in part generated by a circadian oscillator within the bone marrow. The ability of murine bone marrow granulo-monocytic (GM) precursors to form colonies following colony-stimulating factor (rm GM-CSF) exposure was investigated in liquid culture samples obtained every 3 h for a span of up to 198 h. The CFU-GM count varied rhythmically over the first 4 d of culture, with a reproducible maximum in the early morning hours, similar to that observed in vivo. These experiments provide the first evidence that bone marrow progenitors sustain in vitro circadian rhythmicity, and they demonstrate the presence of a circadian time-keeping system within these cells. The results support the potential usefulness of bone marrow cultures for investigating chronopharmacologic effects of anticancer drugs and cytokines on this target system.  相似文献   
69.
The thyroid is a bilobated endocrine gland localized at the base of the neck, producing the thyroid hormones T3, T4, and calcitonin. T3 and T4 are produced by differentiated thyrocytes, organized in closed spheres called follicles, while calcitonin is synthesized by C-cells, interspersed in between the follicles and a dense network of blood capillaries. Although adult thyroid architecture and functions have been extensively described and studied, the formation of the “angio-follicular” units, the distribution of C-cells in the parenchyma and the paracrine communications between epithelial and endothelial cells is far from being understood.This method describes the sequential steps of mouse embryonic thyroid anlagen dissection and its culture on semiporous filters or on microscopy plastic slides. Within a period of four days, this culture system faithfully recapitulates in vivo thyroid development. Indeed, (i) bilobation of the organ occurs (for e12.5 explants), (ii) thyrocytes precursors organize into follicles and polarize, (iii) thyrocytes and C-cells differentiate, and (iv) endothelial cells present in the microdissected tissue proliferate, migrate into the thyroid lobes, and closely associate with the epithelial cells, as they do in vivo.Thyroid tissues can be obtained from wild type, knockout or fluorescent transgenic embryos. Moreover, explants culture can be manipulated by addition of inhibitors, blocking antibodies, growth factors, or even cells or conditioned medium. Ex vivo development can be analyzed in real-time, or at any time of the culture by immunostaining and RT-qPCR.In conclusion, thyroid explant culture combined with downstream whole-mount or on sections imaging and gene expression profiling provides a powerful system for manipulating and studying morphogenetic and differentiation events of thyroid organogenesis.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号